Derivative Rules - Math 142

(You will not be able to use this on quizzes or exams)
(0)

$$
\frac{d}{d x}(c f(x))=c f^{\prime}(x) ; \quad \frac{d}{d x}(f \pm g(x))=f^{\prime}(x) \pm g^{\prime}(x)
$$

(1) (Power Rule)

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

(2) (Exponent Rule)

$$
\frac{d}{d x}\left(a^{x}\right)=\ln a \cdot a^{x} ; \quad \quad \frac{d}{d x}\left(e^{k x}\right)=k e^{k x}
$$

(3) (Logarithm Rule)

$$
\frac{d}{d x}\left(\log _{a}(x)\right)=\frac{1}{x \ln a} ; \quad \quad \frac{d}{d x}(\ln x)=\frac{1}{x}
$$

(4) (Trig Rules)

$$
\frac{d}{d x}(\sin x)=\cos x ; \quad \frac{d}{d x}(\cos x)=-\sin x
$$

The derivatives of the remaining 4 basic trig functions can be deduced from the derivatives of $\sin x$ and $\cos x$ along with the Product, Chain and Quotient rules below. Space has been left for you to derive these yourselves.
(5) (Product Rule)

$$
\frac{d}{d x}(f \cdot g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

(6) (Chain Rule)

$$
\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) g^{\prime}(x)
$$

(7) (Quotient Rule)

$$
\frac{d}{d x}\left(\frac{f}{g}(x)\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g^{2}(x)}
$$

(8) (Inverse Trig Rules)

$$
\begin{array}{rlrl}
\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} ; & \frac{d}{d x}\left(\cos ^{-1} x\right) & =-\frac{1}{\sqrt{1-x^{2}}} & \text { when }|x|<1 \\
\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} ; & \frac{d}{d x}\left(\cot ^{-1} x\right) & =-\frac{1}{1+x^{2}} \quad \text { when } x \in \mathbb{R} \\
\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{|x| \sqrt{x^{2}-1}} ; & \frac{d}{d x}\left(\csc ^{-1} x\right) & =-\frac{1}{|x| \sqrt{x^{2}-1}} & \text { when }|x|>1
\end{array}
$$

